Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.952
Filtrar
1.
Environ Res ; 252(Pt 4): 119070, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710431

RESUMEN

Mangrove wetlands, as one of the natural ecosystems with the most ecological services, have garnered widespread attention about their microbial driven biogeochemical cycling. Urbanization have led to different spatial patterns of environmental conditions and microbial communities in mangroves. However, viruses, as the pivotal drivers of biogeochemical cycling in mangroves, remain inadequately explored in terms of how their ecological potential and complex interactions with host respond to functional zonings. To address this knowledge gap, we conducted a comprehensive investigation on the structural and functional properties of temperate and lytic viruses in mangrove wetlands from different functional zonings by jointly using high-throughput sequencing, prokaryotic and viral metagenomics. Multiple environmental factors were found to significantly influence the taxonomic and functional composition, as well as lysogen-lysis decision-making of mangrove viruses. Furthermore, enriched auxiliary metabolic genes (AMGs) involved in methane, nitrogen and sulfur metabolism, and heavy metal resistance were unveiled in mangrove viruses, whose community composition was closely related to lifestyle and host. The virus-host pairs with different lifestyles were also discovered to react to environmental changes in different ways, which provided an empirical evidence for how virus and bacteria dynamics were specific to viral lifestyles in nature. This study expands our comprehension of the intricate interactions among virus, prokaryotic host and the environment in mangrove wetlands from multiple perspectives, including viral lifestyles, virus-host interactions, and habitat dependence. Importantly, it provides a new ecological perspective on how mangrove viruses are adapted to the stress posed by urbanization.

2.
Biomed Pharmacother ; 175: 116722, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729051

RESUMEN

Ulcerative colitis (UC) is a complex immune-mediated chronic inflammatory bowel disease. It is mainly characterized by diffuse inflammation of the colonic and rectal mucosa with barrier function impairment. Identifying new biomarkers for the development of more effective UC therapies remains a pressing task for current research. Ferroptosis is a newly identified form of regulated cell death characterized by iron-dependent lipid peroxidation. As research deepens, ferroptosis has been demonstrated to be involved in the pathological processes of numerous diseases. A growing body of evidence suggests that the pathogenesis of UC is associated with ferroptosis, and the regulation of ferroptosis provides new opportunities for UC treatment. However, the specific mechanisms by which ferroptosis participates in the development of UC remain to be more fully and thoroughly investigated. Therefore, in this review, we focus on the research advances in the mechanism of ferroptosis in recent years and describe the potential role of ferroptosis in the pathogenesis of UC. In addition, we explore the underlying role of the crosslinked pathway between ferroptosis and other mechanisms such as macrophages, neutrophils, autophagy, endoplasmic reticulum stress, and gut microbiota in UC. Finally, we also summarize the potential compounds that may act as ferroptosis inhibitors in UC in the future.

4.
Plants (Basel) ; 13(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732399

RESUMEN

The roots, stems, leaves, and seeds of Eucommia ulmoides contain a large amount of trans-polyisoprene (also known as Eu-rubber), which is considered to be an important laticiferous plant with valuable industrial applications. Eu-rubber used in industry is mainly extracted from leaves. Therefore, it is of great significance to identify genes related to regulating the leaf size of E. ulmoides. Plant growth-regulating factors (GRFs) play important roles in regulating leaf size, and their functions are highly conserved across different plant species. However, there have been very limited reports on EuGRFs until now. In this study, eight canonical EuGRFs with both QLQ and WRC domains and two putative eul-miR396s were identified in the chromosome-level genome of E. ulmoides. It is found that, unlike AtGRFs, all EuGRFs contain the miR396s binding site in the terminal of WRC domains. These EuGRFs were distributed on six chromosomes in the genome of E. ulmoides. Collinearity analysis of the E. ulmoides genome revealed that EuGRF1 and EuGRF3 exhibit collinear relationships with EuGRF2, suggesting that those three genes may have emerged via gene replication events. The collinear relationship between EuGRFs, AtGRFs, and OsGRFs showed that EuGRF5 and EuGRF8 had no collinear members in Arabidopsis and rice. Almost all EuGRFs show a higher expression level in growing and developing tissues, and most EuGRF promoters process phytohormone-response and stress-induced cis-elements. Moreover, we found the expression of EuGRFs was significantly induced by gibberellins (GA3) in three hours, and the height of E. ulmoides seedlings was significantly increased one week after GA3 treatment. The findings in this study provide potential candidate genes for further research and lay the foundation for further exploring the molecular mechanism underlying E. ulmoides development in response to GA3.

5.
Diabetes Metab Syndr Obes ; 17: 1987-1997, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38746045

RESUMEN

Purpose: Diabetic nephropathy (DN), a major complication of diabetes mellitus, significantly impacts global health. Identifying individuals at risk of developing DN is crucial for early intervention and improving patient outcomes. This study aims to develop and validate a machine learning-based predictive model using integrated biomarkers. Methods: A cross-sectional analysis was conducted on a baseline dataset involving 2184 participants without DN, categorized based on their development of DN over a follow-up period of 36 months: DN (n=1270) and Non-DN (n=914). Various demographic and clinical parameters were analyzed. The findings were validated using an independent dataset comprising 468 participants, with 273 developing DN and 195 remaining as Non-DN over the follow-up period. Machine learning algorithms, alongside traditional descriptive statistics and logistic regression were used for statistical analyses. Results: Elevated levels of serum creatinine, urea, and reduced eGFR, alongside an increased prevalence of retinopathy and peripheral neuropathy, were prominently observed in those who developed DN. Validation on the independent dataset further confirmed the model's robustness and consistency. The SVM model demonstrated superior performance in the training set (AUC=0.79, F1-score=0.74) and testing set (AUC=0.83, F1-score=0.82), outperforming other models. Significant predictors of DN included serum creatinine, eGFR, presence of diabetic retinopathy, and peripheral neuropathy. Conclusion: Integrating machine learning algorithms with clinical and biomarker data at baseline offers a promising avenue for identifying individuals at risk of developing diabetic nephropathy in type 2 diabetes patients over a 36-month period.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38747453

RESUMEN

OBJECTIVES: Both age and CYP2C19 genotypes affect voriconazole plasma concentration; the interaction of age and CYP2C19 genotypes on voriconazole plasma concentration remains unknown. This study aims to investigate the combined effects of age and CYP2C19 genotypes on voriconazole plasma concentration in Chinese patients. METHODS: A total of 480 patients who received voriconazole treatment were recruited. CYP2C19*2 (rs4244285) and CYP2C19*3 (rs4986893) polymorphisms were genotyped. Patients were divided into the young and the elderly groups by age of 60 years old. Influence of CYP2C19 genotype on steady-state trough concentration (Css-min) in overall patients and in age subgroups was analyzed. RESULTS: Voriconazole Css-min correlated positively with age, and mean voriconazole Css-min was significantly higher in the elderly group (P < 0.001). CYP2C19 poor metabolizers showed significantly increased mean voriconazole Css-min in the young but not the elderly group. The percentage of patients with subtherapeutic voriconazole Css-min (<1.0 mg/l) was higher in the young group and that of supratherapeutic voriconazole Css-min (>5.5 mg/l) was higher in the elderly patients. When the average Css-min in the CYP2C19 normal metabolizer genotype was regarded as a reference, CYP2C19 genotypes showed greater impact on voriconazole Css-min in the young group, while the influence of age on voriconazole Css-min exceeded CYP2C19 genotypes in the elderly. CONCLUSION: CYP2C19 genotypes affects voriconazole exposure is age dependent. Influence of CYP2C19 poor metabolizer genotype on increased voriconazoleexposure is prominent in the young, while age is a more important determinant factor for increased voriconazole exposure in the elderly patients.

7.
Omega (Westport) ; : 302228241254001, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744535

RESUMEN

The number of parents in China who have lost their only child, referred to as shidu parents, currently exceeds one million and is increasing by approximately 76,000 annually. Shidu parents face a unique challenge in long-term care, primarily stemming from the sudden and tragic loss of their only child, which leads to a substantial decrease in their social support network. A multi-stage, stratified, and cluster sampling method was employed across various economic belts. Linear regression analysis was utilized to examine factors associated with the social support status of shidu and non-shidu parents. The level of social support decreases as the severity of depression increases. Shidu parents with grandchildren tend to have good social support. The city of Hangzhou exhibits relatively high levels of social support. Married individuals typically report higher levels of social support. It is recommended to prioritize shidu parents without grandchildren as a primary focus for government and societal support. Key recommendations include strengthening social skills training and developing social support networks. Drive economic development, particularly in relatively underdeveloped regions. Strengthen social organizations and community development. Enhancing access to support services, leveraging technology, and encouraging volunteerism for non-married parents.

8.
Microbiol Spectr ; : e0010724, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712934

RESUMEN

This study aimed to assess the in vitro efficacy of ceftazidime-avibactam (CZA) in combination with various antimicrobial agents against carbapenem-resistant Klebsiella pneumoniae (CRKP). We selected 59 clinical CRKP isolates containing distinct drug resistance mechanisms. The minimum inhibitory concentrations (MICs) of meropenem (MEM), colistin (COL), eravacycline (ERA), amikacin (AK), fosfomycin (FOS), and aztreonam (ATM), both individually and in combination with CZA, were tested using the checkerboard method. The interactions of antimicrobial agent combinations were assessed by fractional inhibitory concentration index (FICI) and susceptible breakpoint index (SBPI). The time-kill curve assay was employed to dynamically evaluate the effects of these drugs alone and in combination format. In the checkerboard assay, the combination of CZA+MEM showed the highest level of synergistic effect against both KPC-producing and carbapenemase-non-producing isolates, with synergy rates of 91.3% and 100%, respectively. Following closely was the combination of FOS+CZA . For metallo-beta-lactamases (MBLs) producing strains, ATM+CZA displayed complete synergy, while the combination of MEM+CZA showed a synergy rate of only 57.14% for NDM-producing strains and 91.67% for IMP-producing strains. In the time-kill assay, MEM+CZA also demonstrated significant synergistic effects against the two KPC-2-producing isolates (Y070 and L70), the two carbapenemase-non-producing isolates (Y083 and L093), and the NDM-1-producing strain L13, with reductions in log10 CFU/mL exceeding 10 compared to the control. Against the IMP-producing strain Y047, ATM+CZA exhibited the highest synergistic effect, resulting in a log10 CFU/mL reduction of 10.43 compared to the control. The combination of CZA and MEM exhibited good synergistic effects against KPC-producing and non-enzyme-producing strains, followed by the FOS+CZA combination. Among MBL-producing strains, ATM+CZA demonstrated the most pronounced synergistic effect. However, the combinations of CZA with ERA, AK, and COL show irrelevant effects against the tested clinical isolates. IMPORTANCE: Our study confirmed the efficacy of the combination CZA+MEM against KPC-producing and non-carbapenemase-producing strains. For metalloenzyme-producing strains, CZA+ATM demonstrated the most significant synergy. Additionally, CZA exhibited a notable synergy effect when combined with FOS. These combination therapies present promising new options for the treatment of CRKP infection.

9.
Small ; : e2401701, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705844

RESUMEN

Enhancing the intrinsic stability of perovskite and through encapsulation to isolate water, oxygen, and UV-induced decomposition are currently common and most effective strategies in perovskite solar cells. Here, the atomic layer deposition process is employed to deposit a nanoscale (≈100 nm), uniform, and dense Al2O3 film on the front side of perovskite devices, effectively isolating them from the erosion caused by water and oxygen in the humid air. Simultaneously, nanoscale (≈100 nm) TiO2 films are also deposited on the glass surface to efficiently filter out the ultraviolet (UV) light in the light source, which induces degradation in perovskite. Ultimately, throughthe collaborative effects of both aspects, the stability of the devices is significantly improved under conditions of humid air and illumination. As a result, after storing the devices in ambient air for 1000 h, the efficiency only declines to 95%, and even after 662 h of UV exposure, the efficiency remains at 88%, far surpassing the performance of comparison devices. These results strongly indicate that the adopted Al2O3 and TiO2 thin films play a significant role in enhancing the stability of perovskite solar cells, demonstrating substantial potential for widespread industrial applications.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38702472

RESUMEN

RATIONALE: Methamphetamine addiction is a persistent and intractable pathological learning and memory, whereas no approved therapeutics is available. However, few attentions have been paid to how associative learning participates in the formation of intractable memory related to drug addiction OBJECTIVES AND METHODS: To investigate the role of associative learning in methamphetamine addiction and the underlying neurobiological mechanism, methamphetamine self-administration, oral sucrose self-administration, chemogenetic neuromanipulation, and fiber photometry in mice were performed in this study. RESULTS: We reported that associative learning increased methamphetamine-induced self-administration, but not oral sucrose self-administration. In addition, the enhancement of methamphetamine-induced self-administration was independent of more methamphetamine consumption, and remained with higher drug-taking and motivation in the absence of visual cues, suggesting the direct effects of the associative learning that enhanced methamphetamine-induced self-administration. Moreover, chemogenetic inactivation of the secondary visual cortex (V2) reduced the enhancement of the drug-taking induced by associative learning but did not alter sucrose-taking. Further fiber photometry of V2 neurons demonstrated that methamphetamine-associative learning elicits V2 neuron excitation, and sucrose-associative learning elicits V2 neuron inhibition. CONCLUSIONS: Therefore, this study reveals the neurobiological mechanism of V2 excitability underlying how associative learning participates in the formation of intractable memory related to drug addiction, and gives evidence to support V2 as a promising target for stimulation therapy for methamphetamine addiction.

11.
Food Chem ; 451: 139499, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38703731

RESUMEN

Paotianxiong (PTX) is a processing product of Aconitum carmichaelii Debx., often used as a tonic food daily. However, the structure and activity of the polysaccharide component that plays a major role still need to be determined. In our work, two new polysaccharides were purified from PTX and named PTXP-1 and PTXP-2. Structural analysis showed that PTXP-1 is a glucan with a molecular weight of 915 Da and a structure of 4)-α-D-Glcp-(1 â†’ as the main chain. PTXP-2 is a glucose arabinoglycan with 4)-α-D-Glcp-(1 â†’ as the main chain, containing 8 glycosidic bonds attached, and a molecular weight of 57.9KDa. In vitro probiotic experiments demonstrated that PTXP-1 could significantly promote probiotic growth and acid production. In vivo experiments demonstrated that both PTXP-1 and PTXP-2 exhibited significant effectiveness in promoting the growth of intestinal probiotics. These findings help expand the application of polysaccharide components extracted from tonic herbs as functional food ingredients.

13.
Curr Res Food Sci ; 8: 100754, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736909

RESUMEN

Chronic stress disrupts the emotional and energetic balance, which may lead to abnormal behaviors such as binge eating. This overeating behavior alleviating the negative emotions is called emotional eating, which may exacerbate emotional instability and lead to obesity. It is a complex and multifaceted process that has not yet been fully understood. In this study, we constructed an animal model of chronic mild stress (CMS)-induced emotional eating. The emotional eating mice were treated with tryptophan for 21 days to reveal the key role of tryptophan. Furthermore, serum-targeted metabolomics, immunohistochemical staining, qPCR and ELISA were performed. The results showed that CMS led to the binge eating behavior, accompanied by the disturbed intestinal tryptophan-derived serotonin (5-hydroxytryptamine; 5-HT) metabolic pathways. Then we found that tryptophan supplementation improved depression and anxiety-like behaviors as well as abnormal eating behaviors. Tryptophan supplementation improved the abnormal expression of appetite regulators (e.g., AgRP, OX1R, MC4R), and tryptophan supplementation also increased the tryptophan hydroxylase 2 (tph2) and 5-HT receptors in the hypothalamus of CMS mice, which indicates that the 5-HT metabolic pathway influences feeding behavior. In vitro experiments confirmed that 5-HT supplementation ameliorated corticosterone-induced aberrant expression of appetite regulators, such as AgRP and OX1R, in the hypothalamic cell line. In conclusion, our findings revealed that the tryptophan-derived 5-HT pathway plays an important role in emotional eating, especially in providing targeted therapy for stress-induced obesity.

14.
J Control Release ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38740094

RESUMEN

Rheumatoid arthritis (RA) is a progressive autoimmune disease and drug therapy has been restricted due to poor therapeutic efficacy and adverse effects. In RA synovium, dendritic cells present self-antigens to activate cascade immune pathway. Furthermore, downstream macrophages secrete high levels of pro-inflammatory cytokines; Hyperplasia of activated synovial fibroblasts (FLS) is responsible for hypoxic synovium microenvironment, secretion of cytokines/chemokines and erosion of bone/cartilage tissues. Positive feedback loop of inflammation between macrophages and FLS independent of antigen-presentation is constructed. Herein, an injectable pH-sensitive peptide hydrogel encapsulating siRNA/Methotrexate-polyethyleneimine (siMP, including sip65MP, sip38MP, siCD86MP) and Bismuthene nanosheet/Methotrexate-polyethyleneimine (BiMP) is successfully developed. Among them, siCD86MP reduces protein level of co-stimulatory molecule CD86 while sip65MP and sip38MP separately inhibit NF-κB and MAPK-p38 pathways of macrophages and FLS to suppress secretion of cytokines and MMPs. Meanwhile, reduction in anti-apoptotic property of FLS induced by inhibition of NF-κB pathway has a synergistic effect with photodynamic therapy (PDT) and photothermal therapy (PTT) mediated by BiMP for FLS elimination, effectively ameliorating hypoxic synovium microenvironment. After being injected into synovium, hydrogel responds to acidic microenvironment and serves as a reservoir for sustained drug release and inherent retention capacity of which enables cationic nanoparticles to bypass tissue barrier for precise synovium targeting. This brand-new drug delivery system combines modulating cascade immune pathway from beginning to end by RNAi and eliminating FLS for improving synovium microenvironment by phototherapy together, providing a robust strategy for clinical RA treatment.

15.
Theranostics ; 14(6): 2544-2559, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646641

RESUMEN

Background: Mechanical forces are indispensable for bone healing, disruption of which is recognized as a contributing cause to nonunion or delayed union. However, the underlying mechanism of mechanical regulation of fracture healing is elusive. Methods: We used the lineage-tracing mouse model, conditional knockout depletion mouse model, hindlimb unloading model and single-cell RNA sequencing to analyze the crucial roles of mechanosensitive protein polycystin-1 (PC1, Pkd1) promotes periosteal stem/progenitor cells (PSPCs) osteochondral differentiation in fracture healing. Results: Our results showed that cathepsin (Ctsk)-positive PSPCs are fracture-responsive and mechanosensitive and can differentiate into osteoblasts and chondrocytes during fracture repair. We found that polycystin-1 declines markedly in PSPCs with mechanical unloading while increasing in response to mechanical stimulus. Mice with conditional depletion of Pkd1 in Ctsk+ PSPCs show impaired osteochondrogenesis, reduced cortical bone formation, delayed fracture healing, and diminished responsiveness to mechanical unloading. Mechanistically, PC1 facilitates nuclear translocation of transcriptional coactivator TAZ via PC1 C-terminal tail cleavage, enhancing osteochondral differentiation potential of PSPCs. Pharmacological intervention of the PC1-TAZ axis and promotion of TAZ nuclear translocation using Zinc01442821 enhances fracture healing and alleviates delayed union or nonunion induced by mechanical unloading. Conclusion: Our study reveals that Ctsk+ PSPCs within the callus can sense mechanical forces through the PC1-TAZ axis, targeting which represents great therapeutic potential for delayed fracture union or nonunion.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diferenciación Celular , Condrocitos , Curación de Fractura , Osteogénesis , Células Madre , Canales Catiónicos TRPP , Animales , Curación de Fractura/fisiología , Ratones , Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/genética , Condrocitos/metabolismo , Células Madre/metabolismo , Osteogénesis/fisiología , Ratones Noqueados , Condrogénesis/fisiología , Periostio/metabolismo , Osteoblastos/metabolismo , Osteoblastos/fisiología , Modelos Animales de Enfermedad , Masculino
16.
ACS Med Chem Lett ; 15(4): 555-564, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38628804

RESUMEN

DNA-encoded library (DEL) technology is gaining attention for its rapid construction and deconvolution capabilities. Our study explored a novel strategy using rational DELs tailored for the SARS-CoV-2 papain-like protease, which revealed new fragments. Structural changes post-DEL screening mimic traditional medicinal chemistry lead optimization. We unveiled unique aromatic structures offering an alternative optimization path. Notably, we identified superior binding fragments targeting the BL2 groove. Derivative 16 emerged as the most promising by exhibiting IC50 values of 0.25 µM. Derivative 6, which features an aromatic fragment capped with a naphthalene moiety, showed IC50 values of 2.91 µM. Molecular modeling revealed hydrogen bond interactions with Lys157 residue and potential covalent interactions with nearby amino acid residues. This research underscored DEL's potential for fragment-based drug discovery against SARS-CoV-2 protease.

17.
Nat Commun ; 15(1): 3290, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632225

RESUMEN

The functions of cellular organelles and sub-compartments depend on their protein content, which can be characterized by spatial proteomics approaches. However, many spatial proteomics methods are limited in their ability to resolve organellar sub-compartments, profile multiple sub-compartments in parallel, and/or characterize membrane-associated proteomes. Here, we develop a cross-link assisted spatial proteomics (CLASP) strategy that addresses these shortcomings. Using human mitochondria as a model system, we show that CLASP can elucidate spatial proteomes of all mitochondrial sub-compartments and provide topological insight into the mitochondrial membrane proteome. Biochemical and imaging-based follow-up studies confirm that CLASP allows discovering mitochondria-associated proteins and revising previous protein sub-compartment localization and membrane topology data. We also validate the CLASP concept in synaptic vesicles, demonstrating its applicability to different sub-cellular compartments. This study extends the scope of cross-linking mass spectrometry beyond protein structure and interaction analysis towards spatial proteomics, and establishes a method for concomitant profiling of sub-organelle and membrane proteomes.


Asunto(s)
Proteínas de la Membrana , Proteoma , Humanos , Proteoma/metabolismo , Proteínas de la Membrana/metabolismo , Proteómica/métodos , Orgánulos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo
18.
Ecol Evol ; 14(4): e11271, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38617102

RESUMEN

The hydrological regime is considered to be the major factor that affects the distribution of arbuscular mycorrhiza (AM) fungi in wetlands. We aimed to investigate the responses of AM fungal community to different hydrological gradients. Illumina Miseq sequencing technology was used to study the AM fungal community structure in roots and rhizosphere soils of Phragmites australis in different moisture areas (dry area, alternating wet and dry area, and flooded area) in Mengjin Yellow River wetland. The rhizosphere soils and roots hosted different AM fungal communities. In roots, the AM fungal colonization and Chao1 richness in dry area were significantly higher than that in alternating wet and dry area and flooded area, but the community composition did not vary clearly under different water conditions. In rhizosphere soils, the Chao1 richness of AM fungi in flooded area was significantly higher than that in alternating wet and dry area and dry area, and the AM fungal community structure obviously differed across different areas. The redundancy analyses indicated that changes in the AM fungal community in soils were associated with altered soil properties, and the abundance of the dominant genus Glomus was mostly positively correlated with alkali-hydrolyzable nitrogen in soils. This study helps us to understand the responses of AM fungal community to hydrological gradients in wetlands.

19.
PLoS One ; 19(4): e0300835, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38652719

RESUMEN

BACKGROUND: Previous observational studies have demonstrated a connection between the risk of Type 2 diabetes mellitus (T2DM) and gastrointestinal problems brought on by Helicobacter pylori (H. pylori) infection. However, little is understood about how these factors impact on T2DM. METHOD: This study used data from the GWAS database on H. pylori antibodies, gastroduodenal ulcers, chronic gastritis, gastric cancer, T2DM and information on potential mediators: obesity, glycosylated hemoglobin (HbA1c) and blood glucose levels. Using univariate Mendelian randomization (MR) and multivariate MR (MVMR) analyses to evaluate the relationship between H. pylori and associated gastrointestinal diseases with the risk of developing of T2DM and explore the presence of mediators to ascertain the probable mechanisms. RESULTS: Genetic evidence suggests that H. pylori IgG antibody (P = 0.006, b = 0.0945, OR = 1.0995, 95% CI = 1.023-1.176), H. pylori GroEL antibody (P = 0.028, OR = 1.033, 95% CI = 1.004-1.064), gastroduodenal ulcers (P = 0.019, OR = 1.036, 95% CI = 1.006-1.068) and chronic gastritis (P = 0.005, OR = 1.042, 95% CI = 1.012-1.074) are all linked to an increased risk of T2DM, additionally, H. pylori IgG antibody is associated with obesity (P = 0.034, OR = 1.03, 95% CI = 1.002-1.055). The results of MVMR showed that the pathogenic relationship between H. pylori GroEL antibody and gastroduodenal ulcer in T2DM is mediated by blood glucose level and obesity, respectively. CONCLUSION: Our study found that H. pylori IgG antibody, H. pylori GroEL antibody, gastroduodenal ulcer and chronic gastritis are all related to t T2DM, and blood glucose level and obesity mediate the development of H. pylori GroEL antibody and gastroduodenal ulcer on T2DM, respectively. These findings may inform new prevention and intervention strategies for T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Infecciones por Helicobacter , Helicobacter pylori , Análisis de la Aleatorización Mendeliana , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/genética , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/microbiología , Anticuerpos Antibacterianos/sangre , Enfermedades Gastrointestinales/microbiología , Enfermedades Gastrointestinales/complicaciones , Obesidad/complicaciones , Obesidad/microbiología , Estudio de Asociación del Genoma Completo , Úlcera Péptica/microbiología , Úlcera Péptica/epidemiología , Gastritis/microbiología , Gastritis/complicaciones , Chaperonina 60/genética , Factores de Riesgo
20.
Environ Int ; 186: 108632, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38583296

RESUMEN

Plastic fragments are widely found in the soil profile of terrestrial ecosystems, forming plastic footprint and posing increasing threat to soil functionality and carbon (C) footprint. It is unclear how plastic footprint affects C cycling, and in particularly permanent C sequestration. Integrated field observations (including 13C labelling) were made using polyethylene and polylactic acid plastic fragments (low-, medium- and high-concentrations as intensifying footprint) landfilling in soil, to track C flow along soil-plant-atmosphere continuum (SPAC). The result indicated that increased plastic fragments substantially reduced photosynthetic C assimilation (p < 0.05), regardless of fragment degradability. Besides reducing C sink strength, relative intensity of C emission increased significantly, displaying elevated C source. Moreover, root C fixation declined significantly from 21.95 to 19.2 mg m-2, and simultaneously root length density, root weight density, specific root length and root diameter and surface area were clearly reduced. Similar trends were observed in the two types of plastic fragments (p > 0.05). Particularly, soil aggregate stability was significantly lowered as affected by plastic fragments, which accelerated the decomposition rate of newly sequestered C (p < 0.05). More importantly, net C rhizodeposition declined averagely from 39.77 to 29.41 mg m-2, which directly led to significant decline of permanent C sequestration in soil. Therefore, increasing plastic footprint considerably worsened C footprint regardless of polythene and biodegradable fragments. The findings unveiled the serious effects of plastic residues on permanent C sequestration across SPAC, implying that current C assessment methods clearly overlook plastic footprint and their global impact effects.


Asunto(s)
Huella de Carbono , Plásticos , Suelo , Suelo/química , Carbono/análisis , Atmósfera/química , Ciclo del Carbono , Ecosistema , Plantas , Secuestro de Carbono , Monitoreo del Ambiente/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA